Top6: Tentukan jumlah 7 suku pertama dari barisan 3,6, - STUDYASSISTANT Pengarang: Peringkat 123. Hasil pencarian yang cocok: Tentukan jumlah 7 suku pertama dari barisan 3,6, Top 7: Soal Tentukan a. suku ke 30 dari deret 4.12,36 dots b. Jumah 10 suku Pengarang: zenius.net - Peringkat 132
Kelas 8 SMPPOLA BILANGAN DAN BARISAN BILANGANMengenal Barisan BilanganMengenal Barisan BilanganPOLA BILANGAN DAN BARISAN BILANGANBILANGANMatematikaRekomendasi video solusi lainnya0157Tentukan rumus suku ke-n - 1 dari masing- masing barisa...0354Seorang pemetik kebun memetik jeruknya setiap hari dan me...0138Pada deret geometri 3 + 6 + 12 + ..., jumlah 10 suku pert...0119Tulislah dua suku berikutnya dari setiap barisan berikut....Teks videofriend kita punya soal rumus suku ke-n dari barisan 6 12, 20, 30 42 dan seterusnya kita diminta untuk menentukan rumus suku ke-n yaitu UN dimana kita tulis terlebih dahulu untuk barisan bilangan nya yaitu 6 12 20 30 42 dan seterusnya di mana konferensi lihat 6 menjadi 12 ini kan ditambah dengan 6 kemudian 12 menjadi 20 ditambah dengan 8 20 Menjadi 30 + 1030 menjadi 42 + dengan 12 kemudian 6 jadi 8 ini ditambah dengan 28 menjadi 10 juga ditambah 2 kemudian 10 menjadi 12 juga ditambah 2 maka ini merupakan pola bilangan bertingkatdua di mana kau keren ingat rumus suku ke-n dari pola bilangan bertingkat dua adalah sebagai berikut dimana kita peroleh nilai dari a ini = 6 nilai a = 6 dan nilai ini sama dengan 2 sehingga untuk UN ini = a nya adalah 6 kali banyak adalah 6 kali dengan n min 1 dikali dengan n min 2 dikali dengan c-nya adalah 2 maka kita peroleh = 6 dikali 6 m dikali negatif 1 yaitu negatif 6 kemudian 2 dibagi 2 adalah 1 maka X dengan n adalah n kuadrat kemudian m dikali dengan negatif 2 adalah negatif 2 dikali n adalah negatif negatif kali negatifKita peroleh = untuk n pangkat tertinggi kita letakkan di depan Maka n kuadrat + 6 n min 2 n Min m + 6 min 6 + 2 maka kita peroleh UN = n kuadrat 6 n dan 2 n adalah 4 n Min n adalah 3 n maka + 3 n kemudian 6 dikurangi 6 adalah 0 kemudian + 2 kemudian bisa kita faktorkan di mana untuk koefisien variabel dari X kuadrat adalah 1 maka langsung saja kita tulis di sini adalah n kemudian di sini adalah nm2 kemudian di sini adalah + 3. Maka faktor dari bilangan yang dikali hasilnya adalah positif jual dan dijumlahkan hasilnya adalahPositif 3 ternyata bilangan tersebut adalah positif 2 dan positif 1. Maka kita peroleh rumus suku ke-n UN = n + 2 dikali dengan N + 1 atau bisa kita tulis UN = N + 1 dikali dengan n + 2 n sama aja yang tepat adalah sekian sampai jumpa lagi di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Padapelajaran kali ini, kita akan menemukan suku berikutnya dari suatu pola barisan bilangan sebelumnya. Ingat bahwa pola bilangan adalah rangkaian dari beberapa angka yang membentuk pola yang tertentu. Contoh. Temukan dua suku berikutnya dari pola barisan berikut; 5, 11, 23, 47, Jawab. 5, 11, 23, 47,
MMMeta M26 Februari 2022 0659Pertanyaan51IklanIklanNNNajwa N26 Februari 2022 0821Rumus barisan aritmatika Un = a + n-1 b a = 12 b = 6 Un 12 + 60-1 6 12+ 59 x 6 12 + 354 366 Semoga membantu 1Yuk, beri rating untuk berterima kasih pada penjawab soal!IklanIklanMau jawaban yang terverifikasi?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuTanya ke ForumRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Chat TutorPerdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!Klaim Gold gratis sekarang!Dengan Gold kamu bisa tanya soal ke Forum sepuasnya,
Ctulislah tujuh suku pertama. Rumus suku ke n dari barisan bilangan 3 6 12 24 adalah. Un suku ke n a u1 suku pertama. Karena itu dengan menggunakan rumus sn 1. Deret 3 6 9. Silahkan tentukan rumus suku ke n pada barisan berikut ini. N 2a n 1 b diperoleh.
Pembahasan UN 2019 Barisan dan Deret Matematika IPS 1. Suku ke-4 suatu barisan aritmetika adalah 33, sedangkan suku ke-7 adalah 54, suku ke-15 barisan tersebut adalah .... A. 162 B. 118 C. 110 D. 92 E. 70 Pembahasan TRIK JITU Jika $U_{n}=P$ dan $U{m}=Q$ maka $b=\frac{P-Q}{n-m}$ Diketahui $U_{7}=54$ dan $U_{4}=33$ maka $b=\frac{54-33}{7-4}=\frac{21}{3}=7.$ Selanjutnya \begin{align*} U_{15}&=U_{7}+8b\\ &=54+ &=54+56\\ &=110. \end{align*} Jawab C 2. Suku kelima suatu barisan aritmetika adalah 28 dan suku kesepuluhnya adalah 53. Jumlah 18 suku pertama barisan aritmetika tersebut adalah .... A. 816 B. 819 C. 826 D. 909 E. 919Pembahasan $U_{10}=53$ dan $U_{5}=28$ maka $b=\frac{53-28}{10-5}=\frac{25}{5}=5.$ Selanjutnya \begin{align*} U_{5}&=28\\ a+4b&=28\\ a+20&=28\\ a&=8. \end{align*} INGAT $S_{n}=\frac{n}{2}2a+n-1b$ \begin{align*} S_{18}&=\frac{18}{2} &=916+85\\ &=909. \end{align*} Jawab D 3. Jumlah tak hingga dari deret $4+3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64}+...$ adalah .... A. $\frac{13}{3}$ B. $\frac{16}{3}$ C. $13$ D. $16$ E. $\frac{65}{4}$ Pembahasan INGAT $S_{\infty}=\frac{a}{1-r}$ \begin{align*} \frac{a}{1-r}&=\frac{4}{1-\frac{3}{4}}\\ &=\frac{4}{\frac{1}{4}}\\ &=16. \end{align*} Jawab D 4. Diketahui suku ke-3 dan suku ke-6 barisan geometri berturut-turut adalah 12 dan 96. Rumus suku ke-n barisan tersebut adalah .... A. $U_{n}= B. $U_{n}= C. $U_{n}= D. $U_{n}= E. $U_{n}=2^{n-1}$ Pembahasan \begin{align*} \frac{U_6}{U_{3}}&=\frac{96}{12}\\ \frac{ar^{5}}{ar^{2}}&=8\\ r^{3}&=8\\ r&=2. \end{align*} Selanjutnya \begin{align*} U_{3}&=12\\ ar^{2}&=12\\ a&=3. \end{align*} Jadi $U_{n}=ar^{n-1}= Jawab D Popular posts from this blog Setelah membahas materi tentang permutasi dan kombinasi saat ini akan membahas soal Ujian Nasional 2018 tentang permutasi dan kombinasi. MATEMATIKA KELAS IPA 1. Arkan akan membuat password untuk alamat emailnya yang terdiri dari 5 huruf kemudian diikuti oleh 2 angka yang berbeda. Jika huruf yang disusun berasal dari pembentuk kata pada namanya, maka banyaknya password yang dibuat adalah ... A. 1800 B. 2160 C. 2700 D. 4860 E. 5400 Jawab D Pembahasan Kata "arkan" terdiri dari $5$ huruf dan yang sama ada $2$, maka banyak cara menyusun huruf ada $\frac{5!}{2!}$. Selanjutnya diikuti $2$ angka yang berbeda, karena banyak bilangan ada $10$, maka banyak susunan yang terdiri dari $2$ angka berbeda ada $10\cdot 9$, sehingga banyaknya password yang dapat dibuat adalah $\frac{5!}{2!}\cdot 10\cdot 9=5400.$ 2. Dari 12 soal yang diberikan, siswa harus mengerjakan 10 soal dengan syarat nomor 1, 2, 3, 4, dan 5 harus dikerjakan. Banyak kemungkinan susuna 1. Soal Nilai 10 dalam segitiga P adalah hasil operasi aritmetik semua bilangan di luar segitiga P. Dengan menggunakan pola operasi aritmetik yang sama, nilai dalam segitiga Q yang paling tepat adalah .... A. 6 B. 8 C. 12 D. 15 E. 24 Pembahasan Nilai 10 dalam segitiga P berasal dari $\frac{30}{2}-5$, maka nilai dalam segitiga Q adalah $\frac{45}{3}-9=6.$ Jawaban A 2. Soal Nilai 23 dalam segiempat A adalah hasil operasi aritmetik semua bilangan di luar segiempat A. Dengan menggunakan pola operasi aritmetik yang sama, nilai dalam segiempat B yang paling tepat adalah .... A. 2 B. 16 C. 28 D. 62 E. 68 Pembahasan Nilai 23 dalam segiempat A berasal dari $7\times 5-4\times 3$, maka dengan pola yang sama nilai dalam segiempat B adalah $5\times 8 - 4\times 6=16.$ Jawaban B MAT IPA Perhatikan gambar grafik berikut. Jika grafik fungsi $fx=ax^{2}+bx+c$ seperti pada gambar, nilai $a$, $b$, dan $c$ yang memenuhi adalah .... A. $a>0$, $b>0$, dan $c>0$ B. $a0$, dan $c>0$ C. $a0$, dan $c0$, $b0$ E. $a0$. Karena titik puncak di sebelah kiri sumbu y maka $a$ dan $b$ sama tanda sehingga diperoleh $b>0$. $c$ merupakan titik potong kurva dengan sumbu y sehingga $c>0$. Jawab A MAT IPS Persamaan grafik fungsi kuadrat pada gambar di bawah ini adalah .... A. $y=2x^{2}-x-6$ B. $y=2x^{2}+x-6$ C. $y=x^{2}-2x-6$ D. $y=x^{2}+2x-6$ E. $y=x^{2}-4x-6$ Pembahasan Diketahui titik puncak grafik $x_{p},y_{p}=1,-7$ dan grafik melalui $0,-6$. INGAT Persamaan fungsi kuadrat yang diketahui titik puncak $x_{p},y_{p}$ dan satu titik yang lain adalah $y=ax-x_{p}^{2}+y_{p}$ \begin{ Berikut ini adalah pembahasan prediksi soal HOTS UN 2019 tentang peluang yang soalnya telah diberikan pada postingan sebelumnya. Soal lengkap klik DISINI. 1. Di dalam sebuah kantong terdapat 5 bola putih, 3 bola biru, dan 2 bola merah. Jika diambil 5 bola tanpa pengembalian, maka peluang banyak bola putih yang terambil tiga kali banyak bola biru yang terambil adalah ... Pembahasan Kejadian terambil bola putih tiga kali biru yaitu BPPPM bisa dibalik susunannya sehingga banyaknya ada $\frac{5!}{3!}=20$ Peluang terambil BPPPM $=\frac{3}{10}\cdot \frac{5}{9}\cdot\frac{4}{8}\cdot\frac{3}{7}\cdot\frac{2}{6}=\frac{1}{84}$. Karena ada 20 susunan yang berbeda maka peluangnya $=\frac{1}{84}\times20=\frac{5}{21}$. 2. Diketahui 3 kantong masing masing berisi 9 bola yang terdiri atas 3 bola merah, tiga bola kuning, dan 3 bola hijau. dari setiap kantong diambil satu bola. Peluang terambilnya paling sedikit dua bola berwarna merah adalah ... Pembahasan Kejadian terambil p Soal Misalkan $x,y$ menyatakan koordinat suatu titik pada bidang-xy dengan $x-y\neq 0.$ Apakah $x>y$? Putuskan apakah pernyataan 1 dan 2 berikut cukup untuk menjawab pertanyaan $1.$ $x^{2}-2xy+y^{2}=4x-y$ $2.$ $2x=2y-6$ A. Pernyataan $1$ SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan $2$ SAJA tidak cukup B. Pernyataan $2$ SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan $1$ SAJA tidak cukup C. Dua pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup D. Pernyataan $1$ SAJA cukup untuk menjawab pertanyaan dan pernyataan $2$ SAJA cukup Pembahasaan Dari pernyataan $1$ diperoleh \begin{align*} x^{2}-2xy+y^{2}&=4x-y\\ x-y^{2}&=4x-y\\ x-y=4. \end{align*} Karena $x-y=4$, maka haruslah $x>y$. Dari pernyataan $2$ diperoleh \begin{align*} 2x&=2y-6\\ x-y&=-3. \end{align*} Karena $x-y=-3$, maka haruslah $xBilanganasli kelipatan 3 yang kurang dari 100 adalah 3, 6, 9, 12, , 99 sehingga diperoleh . a = 3, b = 3, dan Un = 99. Terdapat 60 suku dalam barisan aritmetika yang mana suku pertama adalah 9 dan. Carilah suku ke-11 dalam suatu barisan geometri dimana suku ke-4 adalah 24 dan suku ke-9 adalah 768. Penyelesaian: Diketahui: a4 = S4
nCcBOW. suku ke 60 dari barisan 12 18 24 30 adalah